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1. Introduction

In this paper we restrict ourselves on purpose to one space dimension as a preparatory
study for the case or more space dimensions. We study a particular example problem
which has been put forward by Dr. W.H.A. Schilders, Philips, The Netherlands. This
problem models a transistor and turns out to be a lot harder to solve than the forward or
reversed biased diode problem. We apply nonlinear multigrid and encounter a serious
difficulty due to the nonlinearity of the problem. The difficulty is analysed and this
provides insight equally well for the case of more space dimensions. Some modifications
are proposed which significantly increase the robustness of the nonlinear multigrid
method and which look promising also for the more-dimensional case.

2. The problem
The behaviour of a steady semiconductor device can be described by the following set of
equations (cf. e.g. [5]):

-V1, = ng(exp(c0,-¥)) - exp(a(y-9,))) + gD, (2.1a)

-VJ], = +qR, (2.1b)

-Vl,=-¢R, (2.1¢c)
where J, is defined by

Iy =€Vy, (2.2a)
and

Jn = Hpexp(o(y-0,))V(0d,), (2.2b)

Jp = Hpexp(a(0,- W)V (0hp), (2.2¢)
with

- _ ngqill, — - niqp-g
P S
Substitution of (2.2) into (2.1) results in a system of three nonlinear partial differentaial
equations for the variables

V, ¢, and ¢,
In (2.1) y represents the electrostatic potential, ¢,, and ¢, are the hole and electron quasi-
Fermi potentials. On the one hand, by choosing these variables, the problem is strongly

nonlinear, on the other hand the values assumed by (y, ¢,,, ¢,) are in a moderate range.
The quasi-Fermi potentials satisfy the well-known relations:

n = n,exp(o(y-9,)), (2.3a)
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p = nexp(o(0,-y)), (2.3b)
where p and n describe the concentration of holes and electrons respectively.
Equations (2.1b) and (2.1c) are called the continuity equations; J,, is the electron current

density, J, is the hole current density, R is the recombination-generation rate, a function
of n and p. The doping profile D is a function of the space variable x. The quantities €, g,

0., 1, W, Tepresent the permittivity, the elementary charge, the inverse of the thermal
voltage and the electron and hole mobility respectively. In this paper we consider the case

of only one space dimension and assume €, @, i, and y, to be constant.

2.1 A particular 1D model problem.
We will focus our attention to a particular (hard) 1D model problem which has been
supplied by Dr. W.H.A. Schilders (cf.[6,7]). Here the problem constants are

e = 1.035918,'2, ¢ = 1.602],7 "%, p, = b, = 500, n; = 1.22,°,

o = g/KT, k = 1.38054,™, T = 300. 2.4)
The function R is given by
pn - n?
= , T = 10-6.
T(p +n +2n)

In figure 2 a graph of the doping function D(x) is shown after the transformation
D — sign(D) 0log(1 + |D}).
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FIGURE 1. The doping profile.

The problem is defined on the domain Q = [0, 81 0'4]. We have three contacts to our

semiconductor device ( the 1D-model of a transistor):
the emitter E at x =0,
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the basis B at x = 1910 ,

the collector C at x = 8l 0"

Boundary conditions at the emitter are:
p - n+ D =0 (i.e. vanishing space charge),

¢u = VE’
J,=0.
Boundary conditions at the basis:
¢p = VB = 0.
Boundary conditions at the collector:
p-n+D=0,
¢n = VC’
¢P = Vc.

For fifteen different cases, each characterized by a pair of voltages (Vg, V), the solution
is required.

case Vg Ve
0 0. 0.
1 0. 0.2
2 0. 0.4
3 0. 0.6
4 0. 0.8
5 0. 1.
6 -0.2 1.
7 -0.4 1.
8 -0.6 1.
9 -0.7 1.
10 -0.8 1.
11 -0.85 1.
12 -0.9 1.
13 -0.95 1.
14 -1. 1.

TABLE 2.1. Subsequent voltages at the emitter and collector for which a solution is
required.

3. The discretization
The interval Q = (0, 8l 0 ) is split up into disjoint boxes B; = (x;., x;), j =1 (1) N.

A point x; is called a wall, a point x; 1 = (x;.) + x;)/2 is called a center. Another set of
submtervals {D;} is defined by
Do = (X0, X12),
= (Xj.1720 Xj4172)»
DN = (xN-IIZ’ XN)-
This set is called the set of dual boxes. The following conditions should be satisfied:

(i) xj-l<x'9

(il) xo = E XN = C

(iii) 3/* with 0</*<N such thatx + = B, i.e. the basis B is at the partition-wall
between two boxes.



By using a finite volume technique we arrive at a cell-centered version of the well-known
Scharfetter-Gummel scheme (cf. e.g.[4,7]). Firstly we apply the Gauss divergence
theorem in one dimension to the equations (2.1) on the domains B;. Secondly we use the

assumption that J, J,,, and J, are piecewise constant on the dual set {D;} (cf. e.g.[1]);
therefore we introduce the notation

J\V jo Jn j? and Jp j°
At the basis B special measures are taken, for full details cf.[7]. Further we introduce the
variables

(\VJ’ ¢nj' ¢p j)T,j S 1 (1) N,
which are associated with the centers of the boxes B;. In this way we arrive at the
following set of discrete equations:

Juj+Inj1 -Rj=0,j=1 ()N, (3.1b)
Jpi+Jp51 + Ry=0,j= 1 ()N, j= j*, j# j*+1. (3.1c)

The piecewise constant functions are derived by (cf.[4])

_ VY
=g 3 3.2a
Vi X002 (3.22)

exp(-0y, i+1)-€Xp(-00y, ;) Ojyy-OY;

Ji=Hy, s (3.2b)
ik exp(-oy,)-exp(-ayy)  Xj+127%j172
e exp(0d, i11)-exp(0d, ) O, -0y,
Tpj=Hp ~ : (3.2¢)
exp(oyjy)-exp(oy) i1z ¥jn
The other functions are defined by:
F;~ qBde.Q, (3.3)
j
Sj=n; Bj(exp(a@,,-w>)-exp<a<w-¢,.»>dfz, (3.3b)
i
R;~q B[Rda, (3.30)

J

where = denotes approximation by midpoint quadrature. For full details on the
discretization of the boundary conditions cf.[7]. In this way we have now discretized the
equations (2.1) into a set of 3N nonlinear equations (3.1). We can write (3.1) in symbolic
form as

M,(q}y) =13 (3.4)

where M, denotes the nonlinear difference operator corresponding with the lefthandside
of (3.1) and where f}, corresponds with the righthandside of (3.1) and g;, with the

variables (Yj, 0, j, 9, j)T-

3.1. Properties of the Jacobian
In this subsection we study how the Jacobian of M, depends on the discrete solution. We

confine ourselves to the dependency on ¢y, results for ¢, can be derived analogously.
First we assume the recombination term to be zero. We freeze the solution components y
and ¢, and consider the ¢,-stencil, at box B;, defined by the triplet
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[s2,G-1),52,(,0),52, 0, +1)] (3.5a)

with
o(-J, 4],
st,(k) = Clpitlp 1) Jk=-1,0,1. (3.5b)
0%, j+x
Because of
st,,(j,-l)<0, stp(i,0)>0, stp(i,+1)<0 (3.6)

the stencil corresponds with an /-matrix.
In ref.[7] the following observation is made upon this stencil:

51,G,0) = (s1,G-1) + s, 1)) + (T, 7+, 1), (3.7)

1t follows from (3.7) that at the discrete solution, i.e. when

JpitIpj1=0
is satisfied, the following equality holds:

Stp(i,o) = '(Stp(i:'l) + Stp(is+l))a
so then the /-matrix possesses also weak diagonal dominance. However, in the middle of
some iterative process to determine the solution, we may well have negative residuals so
that the equality (3.7) implies the loss of diagonal dominance. Therefore ill-conditioning
and numerical difficulties can be expected. (If the recombination term is not neglected then
5t,(/,0) is enlarged with some positive value.) This is one explanation for the difficulties
encountered when applying the Newton method.

4. The Newton Method and Expedients

Applying the Newton method directly to (3.4) involves large storage requirements and the
solution of large linear systems ( it would extremely so in two or more space
dimensions). Therefore it should be applied only for relatively coarse grids. In fact we
will use it as a coarsest grid solver for multigrid methods which will be treated in the next
section. We use some additional tools to enhance the global convergence of the Newton
method:

1) correction transformation cf.[5],
2) continuation ( with boundary voltages as parameter) cf. e.g. [6],
3) smoothing of the Newton-iterates by means of Collective Symmetric Gauss

Seidel relaxation (CSGS) cf.[4].

5. The Multigrid Method

Advanced ways of solving a set of nonlinear equations are the Full Approximation
Scheme (FAS), cf.[2] and the Nonlinear Multigrid Method (NMGM)), cf.[3]. Both
multigrid methods are very similar although the NMGM is more general. Recently, in the
field of semiconductor equations research on multigrid methods has been initiated. If well
applied, a multigrid method can be optimal in the sense that the rate of convergence is
independent of the meshsize. An important advantage of the FAS/NMGM-method is that
no large linear systems need to be stored and solved. The subsequent stages of an usual
FAS-method, applied to (3.4), are:

1) apply p nonlinear relaxation sweeps; thus we get an approximation g, of the
solution which has a smooth residual d, =f;, - M,(q,),
2a) transfer dj, from Q,, to a coarser grid £;; by means of the restriction operator

Ry , and choose a representation q,oild on the coarse grid of g, on the fine grid,
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2b) solve (approximately) on 2 the equation

My(dir™) = My(qly®) + Rydy, (5.1)
2c) prolongate the correction, computed on Q, onto Q, and add to g

G =qn+ Prdy” - Pralt) (5.2)
3) apply g nonlinear relaxation sweeps.

Stage 2 is called the coarse grid correction (CGC). Stage 2b may be obtained by applying
a number of 6 FAS-cycles on the coarser grid. In this way a recursive procedure is
obtained in which a sequence of increasingly coarser grids is used. In this paper we use
p = q =06 =1 throughout. As relaxation we use CSGS. Let the coarsest grid Qy, a

discretization of €2, be given by the set of boxes {By ;}- From Qp we construct the next

finer grid Q;, by division of each box By ; into two disjoint boxes B, »; ; and B,, 2j- BY
repetition we obtain thus a sequence of increasingly finer grids. For the numerical
experiments in this paper we assume in addition that By, 5. and By, »; have equal size.
The restriction operator Ky for right hand side functions is defined by adding two adjacent
values:

Rufn); =Fn 25-1 +Jn 25 (5.3)
As a prolongation operator P, which transfers a solution from a coarse grid to the next
finer one we use a prolongation introduced by Hemker cf.[4] which is based on the
assumption of smoothness of fluxes and which satisfies the Galerkin condition.

Various possibilities exist for choosing the approximation q,”fd, e.g. the application of
fullweighting to g;. Another possibility is to take q,‘;ld equal to q,'fw obtained from the

previous CGC. In practice, the solution efficiency of nonlinear problems was never
shown to be much influenced by either choice of q,';ld, in our case however it is (see
Section 6).

6. Adaptation of the coarse grid correction
Hemker successfully applied boxcentered multigrid FAS iteration to the forward and the
reversed biased diode problem (cf.[4]). However, application of the same algorithm to the
transistorproblem in this paper gives rise to a complication in the CGC due to drastically
Z}?irying problem coefficients. This complication and possible remedies are the topics of

s section.

6.1 Improper solution transfer

The first attempt of applying multigrid to our specific problem was done by employing
FAS, embedded within the Full Multigrid Method (FMG), with only two grids. The
coarse grid problem within the CGC of FAS, was to be solved up to machine-accuracy by
means of the Newton method with expedients (see Section 4). For several cases of the
testproblem it turned out that the twogrid-algorithm gets stuck precisely at this stage. This
is remarkable because the Newton method (with expedients) on his own is successful
even for very coarse grids. Apparently the right hand side of the equation (5.1) in stage

2b) of the CGC, may be outside a proper range of My. Whenever such a difficulty
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occurred one or more of the three solution components depicted a steep gradient and
indeed, in a way, this is causing the trouble.

For an explanation, again consider the ¢,-stencil (see section 3.1). Let the operator A,
denote the variation of a gridfuntion over the centers of two adjacent boxes B; and B;.,. In

[7] it is shown that if both IA; ;y and 1Ay are sufficiently small then
$1,0,0) ~ afi,exp (00, ,--\v,-))~(3;7+$), 6.1)

and if both [A; ;yl and I1Ay are sufficiently large then

Av .

a_A“;.l_x' if Aj_l\VZO,
Stp(i,o) = anpexp(a(q,p J'WJ))
Ay .

These approximations show that the stencil is extremely sensitive to the difference
(¢, 7 v;)- Hence the ¢,-stencil on the coarse grid is extremely sensitive to how ¢, ; and
V; on the coarse grid are determined from their counterparts on the fine grid. Because of a
steep gradient it may well occur that the problem coefficients, i.e. the entries of the

Jacobian of M,, show a quite different order of magnitude on two adjacent boxes.

Therefore, on the coarse grid, the problem coefficients do heavily depend on the particular
coarse grid representation g of g,. When this particular coarse grid representation gy

generates small problem coefficients, the righthand side of equation (5.1) may easily

become out of the range of My (note that Ryd;, does not depend on the particular choice
of g). We conclude that at locations where such a phenomenon occurs we cannot expect

to be able to construct a coarse grid operator My which is a fair representation of the fine
grid operator M, For a more detailed discussion cf.[7].

0.2 Possible remedies
A radical remedy to meet the above sketched difficulty is to prevent the variation

Ay(o,-y)) over two adjacent boxes from getting large, i.e. to introduce local refinement

of the mesh by equidistributing the variation. However, we want to be able to apply
coarse grids in our multigridmethod. Therefore we resort to another remedy.

Let L and R be the centers of two adjacent boxes on the fine grid 2, which together
constitute a box with center M on the coarse grid Q; (see figure 2).

—O0—+—0— Q

FIGURE 2. Nested boxes.
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The centers of the ¢p-stcncils at L, R and M are the coefficients az, a,'; and az

respectively. Let d,(L) and dj,(R) be the residuals at L, R (e.g. for the third equation
only). At M the difference between gy and q;’,ld has the order of magnitude dh(M)/aﬁ

with
dyM) = di(L) + dy(R),
see equation (5.1). Because of a steep gradient in the solution it may occur that
afl << max{af,az },
which implies that the coarse grid correction prolongated to the fine grid becomes far too
large and the solution g, gets spoiled. A way to prevent this situation is to multiply the

restricted residual dp (M) with
dy

— T 0<9HS 1. (6.2)
max{aLSaR}

H _
9M=

For a smooth part of the solution this fraction will be near to 1, for a rapidly varying part
of the solution it will be near to 0 so that the old solution g will be preserved (see (5.2)).

Note that 6;’4 is a different number for each box on the coarse grid. Note also that for

increasingly fine grids all numbers GZ become 1. With this local suppression of the
restricted residual our FAS-algorithm has been modified. It has been applied at all coarser
grids of the nonlinear multigridalgorithm for the continuity-equations. A technical but
noteworthy detail is that in stead of GZ, the number

o, ' = min(20% , 1), (6.3)

has been used as suppression-factor in the numerical experiments.
For more details cf.[7]. Numerical results are shown in the next section.

7. Numerical results
In this section we investigate the performance of our nonlinear multigridalgorithm. We
focus our attention on the effects of local suppression of the restricted residual and the

particular choice of the coarse grid solution qf,’d. In table 7.1 the performance of the

nonlinear multigrid algorithm is measured by the average number of sweeps necessary to

obtain a reduction factor 107! of the maximumnorm of the residual. In the heading of the
table the following abbreviation are used:

case : this refers to table 2.1,

no 6 : no suppression-operator for the restricted residual has been
applied,

6 yes : the suppression-operator for the restricted residual has been
applied,

q,o,ld etc. : defines how qg,ld in (5.1) has been chosen.
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In the event of divergence we write *div.

qf,’d :qpy of 45’ : by

previous CGC fullweighting on g
case no 6 0 yes no 0 0 yes
0 0.66 0.66 0.80 0.80
1 0.88 0.73 1.07 1.07
2 *div 0.85 *div 1.15
3 *div 1.03 *div *div
4 *div 1.06 *div *div
5 *div 0.89 *div *div
6 *div 0.89 *div *div
7 *div 0.89 *div 1.38
8 0.89 0.89 1.40 1.37
9 0.87 0.90 1.54 1.37
10 0.88 0.82 2.59 2.52
11 1.25 1.25 1.22 1.22
12 2.01 2.01 1.75 1.74
13 2.19 2.19 4.66 4.66
14 1.76 1.77 2.44 2.43

TABLE 7.1. Performance of FAS, average number of sweeps necessary to obtain a

reduction factor 10-! of the maximumnorm of the residual; 3 grids: N =16,
32, 64 respectively.

Table 7.1 shows that the use of the 6-operator is not sufficient on his own to guarantee
convergence, apparently the full weighting approximation of the fine grid solution on the

coarse grid may be a poor one (case 3 - 6). The use of the 6-operator combined with a
proper choice of the coarse grid solution gives convergence for all cases. The use of the

8-operator does not slow down convergence in the cases where it is not needed.

For two typical cases, case = 4 and case = 12, we investigate the grid-dependence of the
multigrid convergence in detail. In figure 3 we show the 10-logarithm of the scaled
residual norms after subsequent FAS-sweeps, starting from the result by fullmultigrid
with one FAS-sweep at each level. The coarsest grid always contains 16 boxes, for the
finest grid we take 32, 64, 128 and 256 boxes respectively. Thus we apply multigrid with

2,3, 4 and 5 grids respectively. The local suppression of the restricted residuals (6-
operator) has been applied at all coarser grids.
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FIGURE 3. Muldgrid convergence histories; the coarsest grid numbers 16 boxes.

We observe that the multigrid convergence becomes grid-independent for increasingly
finer grids.

8. Conclusions

At first, when applying the nonlinear multigrid to our 1D-transistorproblem we encounter
several cases with severe divergence. The difficulty is caused by discrepancies among the
discretizations of the nonlinear differential operator on the subsequent grids, due to the
rapidly varying problem coeffficients. This difficulty is met by adaptation of the coarse
grid correction. A proper choice of the coarse grid solution is of importance too, the full
weighting approximation is not satisfactory. With the improvements as proposed we
obtain fast multigrid convergence with a convergence rate that is independent of the
meshsize.
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